3. 事务

Kesa...大约 23 分钟

3.1 事务隔离级别如何实现

事务的特性

  • 原子性(Atomicity):一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节,而且事务在执行过程中发生错误,会被回滚到事务开始前的状态,就像这个事务从来没有执行过一样。 就好比买一件商品,购买成功时,则给商家付了钱,商品到手;购买失败时,则商品在商家手中,消费者的钱也没花出去。
  • 一致性(Consistency):是指事务操作前和操作后,数据满足完整性约束,数据库保持一致性状态。 比如,用户 A 和用户 B 在银行分别有 800 元和 600 元,总共 1400 元,用户 A 给用户 B 转账 200 元,分为两个步骤,从 A 的账户扣除 200 元和对 B 的账户增加 200 元。一致性就是要求上述步骤操作后,最后的结果是用户 A 还有 600 元,用户 B 有 800 元,总共 1400 元,而不会出现用户 A 扣除了 200 元,但用户 B 未增加的情况(该情况,用户 A 和 B 均为 600 元,总共 1200 元)。
  • 隔离性(Isolation):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为多个事务同时使用相同的数据时,不会相互干扰,每个事务都有一个完整的数据空间,对其他并发事务是隔离的。 例如:消费者购买商品这个事务,是不影响其他消费者购买的。
  • 持久性(Durability):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

InnoDB 如何保证 ACID 属性

  • 持久性是通过 redo log (重做日志)来保证的;
  • 原子性是通过 undo log(回滚日志) 来保证的;
  • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
  • 一致性则是通过持久性+原子性+隔离性来保证;

并发事务出现的问题

并发事务会出现:

  1. 脏读(Dirty Read)
  2. 不可重复读(Non-repeatable Read)
  3. 幻读(Phantom Read)

脏读

如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。

假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取余额数据,然后再执行更新操作,如果此时事务 A 还没有提交事务,而此时正好事务 B 也从数据库中读取余额数据,那么事务 B 读取到的余额数据是刚才事务 A 更新后的数据,即使没有提交事务。

图片
图片

因为事务 A 是还没提交事务的,也就是它随时可能发生回滚操作,如果在上面这种情况事务 A 发生了回滚,那么事务 B 刚才得到的数据就是过期的数据,这种现象就被称为脏读

不可重复读

一个事务多次读取同一个数据,但是读取到的数据不一致

假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取余额数据,然后继续执行代码逻辑处理,在这过程中如果事务 B 更新了这条数据,并提交了事务,那么当事务 A 再次读取该数据时,就会发现前后两次读到的数据是不一致的,这种现象就被称为不可重复读。

图片
图片

幻读

一个事务多次查询符合条件的记录数目,查询的数目不一致

假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库查询账户余额大于 100 万的记录,发现共有 5 条,然后事务 B 也按相同的搜索条件也是查询出了 5 条记录。

图片
图片

接下来,事务 A 插入了一条余额超过 100 万的账号,并提交了事务,此时数据库超过 100 万余额的账号个数就变为 6。

然后事务 B 再次查询账户余额大于 100 万的记录,此时查询到的记录数量有 6 条,发现和前一次读到的记录数量不一样了,就感觉发生了幻觉一样,这种现象就被称为幻读

事务的隔离级别

  • 脏读:读到其他事务未提交的数据;
  • 不可重复读:前后读取的数据不一致;
  • 幻读:前后读取的记录数量不一致。

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:

  • 读未提交(*read uncommitted*),指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读提交(*read committed*),指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读(*repeatable read*),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(*serializable* );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

针对不同的隔离级别,并发事务时可能发生的现象也会不同

图片
图片
  • 在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;
  • 在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;
  • 在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;
  • 在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。

当前读

当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

快照读

快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。

Read View

对于「读提交」和「可重复读」隔离级别的事务,通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同,可以把 Read View 理解成一个数据快照。

「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View

而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View

事务开启时机

执行「开始事务」命令,并不意味着启动了事务。在 MySQL 有两种开启事务的命令,分别是:

  • 第一种:begin/start transaction 命令;
  • 第二种:start transaction with consistent snapshot 命令;

这两种开启事务的命令,事务的启动时机是不同的:

  • 执行了 begin/start transaction 命令后,并不代表事务启动了。只有在执行这个命令后,执行了第一条 select 语句,才是事务真正启动的时机;
  • 执行了 start transaction with consistent snapshot 命令,就会马上启动事务

MVCC

MVCC(Multi-Version Concurrency Control,多版本并发控制),通过「版本链」来控制并发事务访问同一个记录

img
img

Read View 有四个重要的字段:

  • m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务
  • min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。
  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
  • creator_trx_id :指的是创建该 Read View 的事务的事务 id

聚簇索引记录中的两个隐藏列:

图片
图片

对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

在创建 Read View 后,我们可以将记录中的 trx_id 划分这三种情况:

img
img

一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见
  • 如果记录的 trx_id 值在 Read View 的 min_trx_idmax_trx_id 之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

可重复度如何实现

可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View

假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,那这两个事务创建的 Read View 如下:

img
img

事务 A 和 事务 B 的 Read View 具体内容如下:

  • 在事务 A 的 Read View 中,它的事务 id 是 51,由于它是第一个启动的事务,所以此时活跃事务的事务 id 列表就只有 51,活跃事务的事务 id 列表中最小的事务 id 是事务 A 本身,下一个事务 id 则是 52。
  • 在事务 B 的 Read View 中,它的事务 id 是 52,由于事务 A 是活跃的,所以此时活跃事务的事务 id 列表是 51 和 52,活跃的事务 id 中最小的事务 id 是事务 A,下一个事务 id 应该是 53。

接着,在可重复读隔离级别下,事务 A 和事务 B 按顺序执行了以下操作:

  • 事务 B 读取小林的账户余额记录,读到余额是 100 万;
  • 事务 A 将小林的账户余额记录修改成 200 万,并没有提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额还是 100 万;
  • 事务 A 提交事务;
  • 事务 B 读取小林的账户余额记录,读到余额依然还是 100 万;

事务 B 第一次读小林的账户余额记录,在找到记录后,它会先看这条记录的 trx_id,此时发现 trx_id 为 50,比事务 B 的 Read View 中的 min_trx_id 值(51)还小,这意味着修改这条记录的事务早就在事务 B 启动前提交过了,所以该版本的记录对事务 B 可见的,也就是事务 B 可以获取到这条记录。

接着,事务 A 通过 update 语句将这条记录修改了(还未提交事务),将小林的余额改成 200 万,这时 MySQL 会记录相应的 undo log,并以链表的方式串联起来,形成版本链,如下图:

img
img

由于事务 A 修改了该记录,以前的记录就变成旧版本记录了,于是最新记录和旧版本记录通过链表的方式串起来,而且最新记录的 trx_id 是事务 A 的事务 id(trx_id = 51)。

然后事务 B 第二次去读取该记录,发现这条记录的 trx_id 值为 51,在事务 B 的 Read View 的 min_trx_id 和 max_trx_id 之间,则需要判断 trx_id 值是否在 m_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是沿着 undo log 链条往下找旧版本的记录,直到找到 trx_id 「小于」事务 B 的 Read View 中的 min_trx_id 值的第一条记录,所以事务 B 能读取到的是 trx_id 为 50 的记录,也就是小林余额是 100 万的这条记录。

最后,当事物 A 提交事务后,由于隔离级别时「可重复读」,所以事务 B 再次读取记录时,还是基于启动事务时创建的 Read View 来判断当前版本的记录是否可见。所以,即使事物 A 将小林余额修改为 200 万并提交了事务, 事务 B 第三次读取记录时,读到的记录都是小林余额是 100 万的这条记录

就是通过这样的方式实现了,「可重复读」隔离级别下在事务期间读到的记录都是事务启动前的记录。

读提交如何实现

读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View

假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,接着按顺序执行了以下操作:

  • 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;
  • 事务 A 修改数据(还没提交事务),将小林的账户余额从 100 万修改成了 200 万;
  • 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;
  • 事务 A 提交事务;
  • 事务 B 读取数据(创建 Read View),小林的账户余额为 200 万;
img
img

事务 B 在找到小林这条记录时,会看这条记录的 trx_id 是 51,在事务 B 的 Read View 的 min_trx_id 和 max_trx_id 之间,接下来需要判断 trx_id 值是否在 m_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录

沿着 undo log 链条往下找旧版本的记录,直到找到 trx_id 「小于」事务 B 的 Read View 中的 min_trx_id 值的第一条记录,所以事务 B 能读取到的是 trx_id 为 50 的记录,也就是小林余额是 100 万的这条记录。

在事务 A 提交后,由于隔离级别是「读提交」,所以事务 B 在每次读数据的时候,会重新创建 Read View,此时事务 B 第三次读取数据时创建的 Read View 如下:

img
img

会发现这条记录的 trx_id 是 51,比事务 B 的 Read View 中的 min_trx_id 值(52)还小,这意味着修改这条记录的事务早就在创建 Read View 前提交过了,所以该版本的记录对事务 B 是可见的

正是因为在读提交隔离级别下,事务每次读数据时都重新创建 Read View,那么在事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务

小结

事务的四大特性是原子性、一致性、隔离性、持久性。

当多个事务并发执行的时候,会引发脏读、不可重复读、幻读这些问题,那为了避免这些问题,SQL 提出了四种隔离级别,分别是读未提交、读已提交、可重复读、串行化,从左往右隔离级别顺序递增,隔离级别越高,意味着性能越差,InnoDB 引擎的默认隔离级别是可重复读。

而对于幻读现象,不建议将隔离级别升级为串行化,因为这会导致数据库并发时性能很差。MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象。

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
  • 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。

对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同:

  • 「读提交」隔离级别是在每个 select 都会生成一个新的 Read View,也意味着,事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。
  • 「可重复读」隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View,这样就保证了在事务期间读到的数据都是事务启动前的记录。

这两个隔离级别实现是通过「事务的 Read View 里的字段」和「记录中的两个隐藏列」的比对,来控制并发事务访问同一个记录时的行为,这就叫 MVCC(多版本并发控制)。

在可重复读隔离级别中,普通的 select 语句就是基于 MVCC 实现的快照读,也就是不会加锁的。而 select .. for update 语句就不是快照读了,而是当前读了,也就是每次读都是拿到最新版本的数据,但是它会对读到的记录加上 next-key lock 锁。

3.2 MySQL 可重复读 可以完全解决幻读么

幻读

当同一个查询在不同的时间产生不同的结果集时,事务中就会出现所谓的幻象问题。例如,如果 SELECT 执行了两次,但第二次返回了第一次没有返回的行,则该行是“幻像”行。

当前读是如何避免幻读的?

MySQL 里除了普通查询是快照读,其他都是当前读,比如 update、insert、delete,这些语句执行前都会查询最新版本的数据,然后再做进一步的操作。

select ... for update 这种查询语句是当前读,每次执行的时候都是读取最新的数据。

间隙锁

Innodb 引擎为了解决「可重复读」隔离级别使用「当前读」而造成的幻读问题,就引出了间隙锁

假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。

img
img
img
img

事务 A 执行了这面这条锁定读语句后,就在对表中的记录加上 id 范围为 (2, +∞] 的 next-key lock(next-key lock 是间隙锁+记录锁的组合)。

然后,事务 B 在执行插入语句的时候,判断到插入的位置被事务 A 加了 next-key lock,于是事物 B 会生成一个插入意向锁,同时进入等待状态,直到事务 A 提交了事务。这就避免了由于事务 B 插入新记录而导致事务 A 发生幻读的现象

快照读是如何一定程度上避免幻读?

可重复读隔离级是由 MVCC(多版本并发控制)实现的,实现的方式是开始事务后(执行 begin 语句后),在执行第一个查询语句后,会创建一个 Read View,后续的查询语句利用这个 Read View,通过这个 Read View 就可以在 undo log 版本链找到事务开始时的数据,所以事务过程中每次查询的数据都是一样的,即使中途有其他事务插入了新纪录,是查询不出来这条数据的,所以就很好了避免幻读问题。

img在这里插入图片描述

快照读无法完全避免幻读

可重复读隔离级别下虽然很大程度上避免了幻读,但是还是没有能完全解决幻读

第一个发生幻读现象的场景

以这张表作为例子:

img
img

事务 A 执行查询 id = 5 的记录,此时表中是没有该记录的,所以查询不出来。

# 事务 A
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t_stu where id = 5;
Empty set (0.01 sec)

然后事务 B 插入一条 id = 5 的记录,并且提交了事务。

# 事务 B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into t_stu values(5, '小美', 18);
Query OK, 1 row affected (0.00 sec)

mysql> commit;
Query OK, 0 rows affected (0.00 sec)

此时,事务 A 更新 id = 5 这条记录,对没错,事务 A 看不到 id = 5 这条记录,但是他去更新了这条记录,这场景确实很违和,然后再次查询 id = 5 的记录,事务 A 就能看到事务 B 插入的纪录了,幻读就是发生在这种违和的场景

# 事务 A
mysql> update t_stu set name = '小林coding' where id = 5;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> select * from t_stu where id = 5;
+----+--------------+------+
| id | name         | age  |
+----+--------------+------+
|  5 | 小林coding   |   18 |
+----+--------------+------+
1 row in set (0.00 sec)

整个发生幻读的时序图如下:

img
img

在可重复读隔离级别下,事务 A 第一次执行普通的 select 语句时生成了一个 ReadView,之后事务 B 向表中新插入了一条 id = 5 的记录并提交。接着,事务 A 对 id = 5 这条记录进行了更新操作,在这个时刻,这条新记录的 trx_id 隐藏列的值就变成了事务 A 的事务 id,之后事务 A 再使用普通 select 语句去查询这条记录时就可以看到这条记录了,于是就发生了幻读。

因为这种特殊现象的存在,所以我们认为 MySQL Innodb 中的 MVCC 并不能完全避免幻读现象

第二个发生幻读现象的场景

除了上面这一种场景会发生幻读现象之外,还有下面这个场景也会发生幻读现象。

  • T1 时刻:事务 A 先执行「快照读语句」:select * from t_test where id > 100 得到了 3 条记录。
  • T2 时刻:事务 B 往插入一个 id= 200 的记录并提交;
  • T3 时刻:事务 A 再执行「当前读语句」 select * from t_test where id > 100 for update 就会得到 4 条记录,此时也发生了幻读现象。

要避免这类特殊场景下发生幻读的现象的话,就是尽量在开启事务之后,马上执行 select ... for update 这类当前读的语句,因为它会对记录加 next-key lock,从而避免其他事务插入一条新记录。

总结

MySQL InnoDB 引擎的可重复读隔离级别(默认隔离级),根据不同的查询方式,分别提出了避免幻读的方案:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读。
  • 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读。

我举例了两个发生幻读场景的例子。

第一个例子:对于快照读, MVCC 并不能完全避免幻读现象。因为当事务 A 更新了一条事务 B 插入的记录,那么事务 A 前后两次查询的记录条目就不一样了,所以就发生幻读。

第二个例子:对于当前读,如果事务开启后,并没有执行当前读,而是先快照读,然后这期间如果其他事务插入了一条记录,那么事务后续使用当前读进行查询的时候,就会发现两次查询的记录条目就不一样了,所以就发生幻读。

所以,MySQL 可重复读隔离级别并没有彻底解决幻读,只是很大程度上避免了幻读现象的发生。

要避免这类特殊场景下发生幻读的现象的话,就是尽量在开启事务之后,马上执行 select ... for update 这类当前读的语句,因为它会对记录加 next-key lock,从而避免其他事务插入一条新记录。

上次编辑于:
评论
  • 按正序
  • 按倒序
  • 按热度
Powered by Waline v2.15.2